Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3-(Pyridin-4-ylmethoxy)phenol

Liying Han, ${ }^{\text {a }}$ Hu Zang ${ }^{\text {b }}$ and Dajun Sun ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Gynecology, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China, ${ }^{\text {b }}$ Department of Orthopedics, The China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China, and ${ }^{\text {c }}$ Department of Vascular Surgery, The China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
Correspondence e-mail: huzang2010@yahoo.cn

Received 6 November 2010; accepted 8 November 2010

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.041 ; w R$ factor $=0.091$; data-to-parameter ratio $=14.1$.

In the title compound, $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2}$, the phenolic ring is inclined at an angle of $32.70(1)^{\circ}$ with respect to the pyridine ring. In the crystal, intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds link the molecules into $C(11)$ chains along [001].

Related literature

For a related structure, see: Yumoto et al. (2008).

Experimental

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2}$
$M_{r}=201.22$
Monoclinic, $P 2_{6} / n$
$b=9.1160$ (8) Å
$c=17.0039$ (15) A
$a=6.6551$ (6) A
$\beta=100.501$ (1) ${ }^{\circ}$
$V=1014.31(16) \AA^{3}$

$Z=4$

Mo $K \alpha$ radiation
$\mu=0.09 \mathrm{~mm}^{-1}$
Data collection
Bruker SMART APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.930, T_{\text {max }}=0.980$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.091$
$S=0.89$
1981 reflections
140 parameters
$T=293 \mathrm{~K}$
$0.28 \times 0.24 \times 0.22 \mathrm{~mm}$

5411 measured reflections 1981 independent reflections 1310 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.098$

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{~N} 1^{\mathrm{i}}$	$0.95(2)$	$1.75(2)$	$2.6991(17)$	$174(2)$

Symmetry code: (i) $x-\frac{3}{2},-y+\frac{3}{2}, z-\frac{1}{2}$.
Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors thank The China-Japan Union Hospital of Jilin University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5062).

References

Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. VUniversity of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Yumoto, K., Irie, M. \& Matsuda, K. (2008). Org. Lett. 10, 2051-2054.

supplementary materials

Acta Cryst. (2010). E66, o3147 [doi:10.1107/S1600536810045800]

3-(Pyridin-4-ylmethoxy)phenol

L. Han, H. Zang and D. Sun

Comment

Pyridine and its derivatives represent one of the most active classes of compounds possessing a wide application of biological activities, such as stent in intestinal or biliary fields. During the past years, considerable efforts have been paid to demonstrate the efficacy of pyridine derivatives including antibacterial, antifungal, herbicidal, insecticidal and other biological activities. A new pyridine derivatives molecule is synthesized, with the aim of studying its single-crystal structure.

The title molecule (Fig. 1) consists of a phenol moiety ($\mathrm{O} 1 / \mathrm{C} 1-\mathrm{C} 6$) and a methoxy moiety ($\mathrm{O} 2 / \mathrm{C} 7$) attached to a pyridine ring (N1/C8-C12). The pyridine ring is inclined at an angle of $32.70(1)^{\circ}$ with the phenol ring. Bond lengths and angles are within normal ranges, and comparable to closely related structures (Yumoto et al., 2008). In the crystal structure, the crystal packing is consolidated by intermolecular $\mathrm{O} 1-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{~N} 1$ hydrogen bonds linking the molecules into one linear structure.

Experimental

A mixture of 1,3-dihydroxybenzene $(1.1 \mathrm{~g}, 10 \mathrm{mmol})$, 4-chloromethlpyridine hydrochloride ($1.64 \mathrm{~g}, 10 \mathrm{mmol}$), and NaOH $(1.6 \mathrm{~g}, 40 \mathrm{mmol})$ in acetonitrile $(50 \mathrm{ml})$ was refluxed under nitrogen with stirring for 24 h . After cooling to room temperature, the reactant was filtered, and the residue was washed with acetonitrile several times. The mixed filtrate was slowly evaporated and colorless crystals were obtained.

Refinement

All H -atoms bound to carbon were refined using a riding model with $\mathrm{d}(\mathrm{C}-\mathrm{H})=0.93 \AA, U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic and $0.97 \AA, U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})$ for CH 2 atoms. H atoms bonded to O atoms were located in a difference Fourier map.

Figures

Fig. 1. A view of the molecule of (I). Displacement ellipsoids are drawn at the 30% probability level.

3-(Pyridin-4-ylmethoxy)phenol

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2}$

$$
F(000)=424
$$

$M_{r}=201.22$
Monoclinic, $P 2_{1} / n \quad$ Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
$D_{\mathrm{x}}=1.318 \mathrm{Mg} \mathrm{m}^{-3}$

supplementary materials

Hall symbol: -P 2yn
$a=6.6551$ (6) \AA
$b=9.1160(8) \AA$
$c=17.0039(15) \AA$
$\beta=100.501(1)^{\circ}$
$V=1014.31(16) \AA^{3}$
$Z=4$

Cell parameters from 1981 reflections
$\theta=1.9-28.3^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colorless
$0.28 \times 0.24 \times 0.22 \mathrm{~mm}$

1981 independent reflections
1310 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.098$
$\theta_{\text {max }}=26.0^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-8 \rightarrow 8$
$k=-9 \rightarrow 11$
$l=-15 \rightarrow 20$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.091$
$S=0.89$
1981 reflections
140 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0212 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.14 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.18$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
N1	$0.7272(2)$	$0.82817(15)$	$1.01329(9)$	$0.0343(4)$
O1	$-0.50233(18)$	$0.67160(13)$	$0.65242(7)$	$0.0385(3)$
O2	$0.13905(16)$	$0.82363(12)$	$0.78584(7)$	$0.0357(3)$
H1A	$-0.601(3)$	$0.678(2)$	$0.6047(13)$	$0.073(7)^{*}$
C7	$0.3149(2)$	$0.91479(18)$	$0.79342(10)$	$0.0317(4)$
H7A	0.2748	1.0170	0.7939	0.038^{*}
H7B	0.3829	0.8995	0.7482	0.038^{*}
C6	$-0.1795(2)$	$0.75328(18)$	$0.71613(9)$	$0.0296(4)$
H6	-0.1743	0.6758	0.7520	0.036^{*}
C5	$-0.0183(2)$	$0.85103(18)$	$0.72303(9)$	$0.0295(4)$
C12	$0.3904(2)$	$0.81807(17)$	$0.93485(10)$	$0.0320(4)$
H12	0.2540	0.7921	0.9316	0.038^{*}
C8	$0.4572(2)$	$0.87800(17)$	$0.86953(10)$	$0.0271(4)$
C11	$0.5288(3)$	$0.79727(18)$	$1.00500(11)$	$0.0345(4)$
H11	0.4809	0.7596	1.0489	0.041^{*}
C1	$-0.3484(2)$	$0.77025(19)$	$0.65603(10)$	$0.0305(4)$
C2	$-0.3563(3)$	$0.88767(19)$	$0.60343(10)$	$0.0356(4)$
H2	-0.4703	0.9013	0.5635	0.043^{*}
C9	$0.6626(2)$	$0.90938(18)$	$0.87728(10)$	$0.0313(4)$
H9	0.7143	0.9480	0.8344	0.038^{*}
C4	$-0.0223(2)$	$0.96653(18)$	$0.67026(10)$	$0.0348(4)$
H4	0.0871	1.0313	0.6743	0.042^{*}
C3	$-0.1947(2)$	$0.98324(19)$	$0.61087(10)$	$0.0384(5)$
H3	-0.2005	1.0613	0.5753	0.046^{*}
C10	$0.7902(2)$	$0.88286(18)$	$0.94908(10)$	$0.0346(4)$
H10	0.9283	0.9043	0.9532	0.041^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0290(8)$	$0.0365(9)$	$0.0345(9)$	$0.0046(6)$	$-0.0018(7)$	$-0.0058(7)$
O1	$0.0276(7)$	$0.0540(8)$	$0.0305(7)$	$-0.0094(6)$	$-0.0038(6)$	$0.0043(6)$
O2	$0.0296(7)$	$0.0405(7)$	$0.0315(7)$	$-0.0063(5)$	$-0.0091(5)$	$0.0046(5)$
C7	$0.0266(9)$	$0.0371(10)$	$0.0304(10)$	$-0.0015(8)$	$0.0025(8)$	$-0.0030(8)$
C6	$0.0292(9)$	$0.0352(10)$	$0.0231(9)$	$0.0006(8)$	$0.0014(8)$	$0.0026(8)$
C5	$0.0266(9)$	$0.0365(10)$	$0.0231(9)$	$0.0017(8)$	$-0.0012(7)$	$-0.0033(8)$
C12	$0.0228(9)$	$0.0375(11)$	$0.0345(10)$	$0.0018(7)$	$0.0020(8)$	$-0.0024(8)$
C8	$0.0237(9)$	$0.0280(9)$	$0.0283(9)$	$0.0033(7)$	$0.0012(7)$	$-0.0063(7)$
C11	$0.0329(10)$	$0.0388(11)$	$0.0315(10)$	$0.0025(8)$	$0.0050(8)$	$-0.0018(8)$
C1	$0.0252(9)$	$0.0401(11)$	$0.0255(9)$	$-0.0006(8)$	$0.0029(7)$	$-0.0043(8)$
C2	$0.0312(10)$	$0.0406(11)$	$0.0307(10)$	$0.0036(8)$	$-0.0061(8)$	$0.0026(8)$
C9	$0.0287(10)$	$0.0328(10)$	$0.0323(10)$	$0.0001(7)$	$0.0055(8)$	$-0.0063(8)$
C4	$0.0325(10)$	$0.0324(10)$	$0.0364(11)$	$-0.0041(8)$	$-0.0016(8)$	$0.0018(8)$
C3	$0.0422(11)$	$0.0319(10)$	$0.0367(11)$	$-0.0006(8)$	$-0.0046(9)$	$0.0057(8)$

C 10	$0.0243(9)$	$0.0358(10)$	$0.0419(12)$	$0.0003(8)$	$0.0015(8)$	$-0.0112(9)$

Geometric parameters (\AA, ${ }^{\circ}$)

N1-C11	1.332 (2)
N1-C10	1.335 (2)
O1-C1	1.3560 (19)
O1-H1A	0.95 (2)
O2-C5	1.3756 (17)
O2-C7	1.4218 (18)
C7-C8	1.496 (2)
C7-H7A	0.9700
C7-H7B	0.9700
C6-C5	1.383 (2)
C6-C1	1.383 (2)
C6-H6	0.9300
C5-C4	1.381 (2)
C12-C11	1.381 (2)
C11-N1-C10	116.44 (15)
C1-O1-H1A	113.5 (12)
C5-O2-C7	117.50 (13)
O2- $\mathrm{C} 7-\mathrm{C} 8$	109.17 (13)
O2-C7-H7A	109.8
C8-C7-H7A	109.8
O2-C7-H7B	109.8
C8-C7-H7B	109.8
H7A-C7-H7B	108.3
C5-C6-C1	120.27 (16)
C5-C6-H6	119.9
C1-C6-H6	119.9
O2-C5-C4	124.39 (15)
O2-C5-C6	114.70 (15)
C4-C5-C6	120.91 (15)
C11-C12-C8	119.11 (15)
C11-C12-H12	120.4
C8-C12-H12	120.4
C9-C8-C12	117.64 (15)
C9-C8-C7	119.78 (15)
C12-C8-C7	122.54 (14)

C12-C8	1.382 (2)
C12-H12	0.9300
C8-C9	1.379 (2)
C11-H11	0.9300
C1-C2	1.390 (2)
C2-C3	1.372 (2)
C2-H2	0.9300
C9-C10	1.375 (2)
C9-H9	0.9300
C4-C3	1.392 (2)
C4-H4	0.9300
C3-H3	0.9300
C10-H10	0.9300
N1-C11-C12	123.70 (17)
N1-C11-H11	118.2
C12-C11-H11	118.2
O1-C1-C6	117.70 (16)
O1-C1-C2	122.82 (15)
C6- $\mathrm{C} 1-\mathrm{C} 2$	119.46 (16)
C3-C2-C1	119.52 (16)
C3-C2-H2	120.2
C1-C2-H2	120.2
C10-C9-C8	119.27 (16)
C10-C9-H9	120.4
C8-C9-H9	120.4
C5-C4-C3	118.06 (16)
C5-C4-H4	121.0
C3-C4-H4	121.0
C2-C3-C4	121.76 (17)
C2-C3-H3	119.1
C4-C3-H3	119.1
N1-C10-C9	123.82 (16)
N1-C10-H10	118.1
C9-C10-H10	118.1

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{~N} 1^{\mathrm{i}}$	$0.95(2)$	$1.75(2)$	$2.6991(17)$	$174(2)$

Symmetry codes: (i) $x-3 / 2,-y+3 / 2, z-1 / 2$.

Fig. 1

